An FMN hydrolase is fused to a riboflavin kinase homolog in plants.
نویسندگان
چکیده
Riboflavin kinases catalyze synthesis of FMN from riboflavin and ATP. These enzymes have to date been cloned from bacteria, yeast, and mammals, but not from plants. Bioinformatic approaches suggested that diverse plant species, including many angiosperms, two gymnosperms, a moss (Physcomitrella patens), and a unicellular green alga (Chlamydomonas reinhardtii), encode proteins that are homologous to riboflavin kinases of yeast and mammals, but contain an N-terminal domain that belongs to the haloacid dehalogenase superfamily of enzymes. The Arabidopsis homolog of these proteins was cloned by RT-PCR, and was shown to have riboflavin kinase and FMN hydrolase activities by characterizing the recombinant enzyme produced in Escherichia coli. Both activities of the purified recombinant Arabidopsis enzyme (AtFMN/FHy) increased when the enzyme assays contained 0.02% Tween 20. The FMN hydrolase activity of AtFMN/FHy greatly decreased when EDTA replaced Mg(2+) in the assays, as expected for a member of the Mg(2+)-dependent haloacid dehalogenase family. The functional overexpression of the individual domains in E. coli establishes that the riboflavin kinase and FMN hydrolase activities reside, respectively, in the C-terminal (AtFMN) and N-terminal (AtFHy) domains of AtFMN/FHy. Biochemical characterization of AtFMN/FHy, AtFMN, and AtFHy shows that the riboflavin kinase and FMN hydrolase domains of AtFMN/FHy can be physically separated, with little change in their kinetic properties.
منابع مشابه
An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in flavin homeostasis.
Although flavins, riboflavin (RF), FMN and FAD, are essential for primary and secondary metabolism in plants, the metabolic regulation of flavins is still largely unknown. Recently, we found that an Arabidopsis Nudix hydrolase, AtNUDX23, has FAD pyrophosphohydrolase activity and is distributed in plastids. Levels of RF and FAD but not FMN in Arabidopsis leaves significantly increased under cont...
متن کاملIncreased de novo riboflavin synthesis and hydrolysis of FMN are involved in riboflavin secretion from Hyoscyamus albus hairy roots under iron deficiency.
Riboflavin secretion by Hyoscyamus albus hairy roots under Fe deficiency was examined to determine where riboflavin is produced and whether production occurs via an enhancement of riboflavin biosynthesis or a stimulation of flavin mononucleotide (FMN) hydrolysis. Confocal fluorescent microscopy showed that riboflavin was mainly localized in the epidermis and cortex of the root tip and, at the c...
متن کاملThe recognition of glycolate oxidase apoprotein with flavin analogs in higher plants.
The dependence of glycolate oxidase apoprotein (apoGO) activity on flavin analogs was surveyed in 9 higher plants from 7 families. Activities of all apoGOs depended not only on flavin mononucleotide (FMN) but also on flavin adenine dinucleotide (FAD), but not on riboflavin. The kinetic analysis showed that FMN was the optimum cofactor for apoGO from leaves of Brassica campestris. In plant kingd...
متن کاملIncreased de novo riboflavin synthesis and hydrolysis of FMN are involved in riboflavin secretion from Hyoscyamus albus hairy roots under iron
Title Increased de novo riboflavin synthesis and hydrolysis of FMN are involved in riboflavin secretion from Hyoscyamus albus hairy roots under iron deficiency Author(s) Higa, Ataru; Khandakar, Jebunnahar; Mori, Yuko; Kitamura, Yoshie Citation Plant Physiology and Biochemistry, 58, pp.166-173; 2012 Issue Date 2012-09 URL http://hdl.handle.net/10069/29350 Right © 2012 Elsevier Masson SAS. All ri...
متن کاملA novel bifunctional transcriptional regulator of riboflavin metabolism in Archaea
Riboflavin (vitamin B2) is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide, which are essential coenzymes in all free-living organisms. Riboflavin biosynthesis in many Bacteria but not in Archaea is controlled by FMN-responsive riboswitches. We identified a novel bifunctional riboflavin kinase/regulator (RbkR), which controls riboflavin biosynthesis and transport ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 280 46 شماره
صفحات -
تاریخ انتشار 2005